Further Topics in Analysis: Exercises 4

1. Let X and Y be sets.
 (a) Prove that $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$.
 (b) Give an example to show that $\mathcal{P}(X \cup Y)$ is not always the same as $\mathcal{P}(X) \cup \mathcal{P}(Y)$.
 (c) Give an example where $X \neq Y$ and $\mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y)$.
 (d) What condition must X and Y satisfy in order that $\mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y)$?

2. Let \mathcal{A} be the set of all sequences of 0’s and 1’s:
 \[\mathcal{A} = \{ (a_1, a_2, a_3, \ldots, a_k, \ldots) : a_k \in \{0, 1\} \}. \]
 (a) Use Cantor’s diagonalisation method to prove that \mathcal{A} is uncountable. [Hint: Imitate the proof of Theorem 4.2.]
 (b) Deduce that the set $\mathcal{P}(\mathbb{N})$ is uncountable.

3. (a) Give an example of a sequence $(a_n)_{n \in \mathbb{N}}$ of real numbers that has a subsequence tending to 1 and a subsequence tending to 2.
 (b) Let $X = \{x_1, x_2, \ldots, x_s\}$ be a finite set of real numbers. Give an example of a sequence $(a_n)_{n \in \mathbb{N}}$ of real numbers that has subsequences tending to every element of X.
 (c) Give an example of a sequence $(a_n)_{n \in \mathbb{N}}$ of real numbers that has subsequences tending to every integer $m \in \mathbb{Z}$.

4. Find the sets of accumulation points of the following sequences:
 (a) $a_n = (-1)^n + \frac{1}{n}$;
 (b) $a_n = 1 + \frac{(-1)^n}{n}$;
 (c) $a_n = \frac{1}{n} + (-1)^n$;
 (d) $a_n = \frac{(-1)^n}{2n+1}$.

5. Let \mathbb{Q} be the set of rational numbers. Since \mathbb{Q} is countable we may enumerate the elements of \mathbb{Q} as
 \[\mathbb{Q} = \{ q_1, q_2, q_3, \ldots, q_n, \ldots \} \]
 (a) Construct a sequence that includes every rational number an infinite number of times.
 (b) Prove that, for every real number $x \in \mathbb{R}$, there is a subsequence of the sequence constructed in (a) that tends to x.

This material is copyright of the University of Bristol unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University of Bristol and is to be downloaded or copied for your private study only.