Further Topics in Analysis: Exercises 9

1. Let $f : [0, 1] \to \mathbb{R}$ be defined by $f(x) = x$. Prove that f is Riemann integrable and compute
$$\int_0^1 f(x) \, dx$$
as the limit of upper (and lower) sums.

2. Prove that the function $f(x) = \sqrt{x}$ is Riemann integrable on $[0, 1]$ and compute
$$\int_0^1 \sqrt{x} \, dx$$
as the limit of upper (and lower) sums.

Hint: Consider the partition Q_n of $[0, 1]$, given by
$$0 < \frac{1^2}{n^2} < \frac{2^2}{n^2} < \cdots < \frac{i^2}{n^2} < \cdots < \frac{(n-1)^2}{n^2} < 1$$
and compute the lower and the upper sums $L(f, P_n)$ and $U(f, P_n)$. Then compute the limit as $n \to \infty$.

3. (a) Let $g : [0, 1] \to \mathbb{R}$ be defined by
$$g(x) = \begin{cases}
1 & \text{if } x = 1/2, \\
0 & \text{otherwise}.
\end{cases}$$

Show, using the Criterion of Integrability, that g is integrable on $[0, 1]$.

(b) Let $h : [0, 1] \to \mathbb{R}$ be defined by
$$h(x) = \begin{cases}
1 & \text{if } x = 1/n \text{ for some } n \in \mathbb{N}, \\
0 & \text{otherwise}.
\end{cases}$$

Show that h is integrable on $[0, 1]$.

4. Construct a sequence $(g_n)_{n \in \mathbb{N}}$ of Riemann-integrable functions $g_n : [0, 1] \to \mathbb{R}$ converging pointwise to a function $g : [0, 1] \to \mathbb{R}$ which is not Riemann integrable.

Hint: You may wish to use the Criterion of Integrability to show that for each fixed $n \in \mathbb{N}$, g_n is Riemann integrable on $[0, 1]$.

5. Let $f : [a, b] \to \mathbb{R}$ be a bounded function such that $f(x) = 0$ except for a finite number of points. Show that f is Riemann integrable and that $\int_a^b f(x) \, dx = 0$.

This material is copyright of the University of Bristol unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University of Bristol and is to be downloaded or copied for your private study only.