Further Topics in Analysis: Solutions 11

1. Let \(f : [0,1] \to \mathbb{R} \) be a continuous function satisfying
\[
\int_0^x f(t) \, dt = \int_x^1 f(t) \, dt \quad \text{for all } x \in [0,1].
\]
Show that \(f(x) = 0 \) for all \(x \in [0,1] \).

SOLUTION. Define \(F(x) = \int_0^x f(t) \, dt \) for every \(x \in [0,1] \). Since \(f \) is continuous, we can apply Theorem 18.5 to conclude that \(F \) is differentiable with derivative \(f \) on \((0,1)\).

On the other hand, by Theorem 17.1 and the hypothesis, we have the equality
\[
F(x) = \int_1^0 f(t) \, dt - F(x)
\]
for all \(x \in [0,1] \), from which we conclude that
\[
F(x) = \frac{1}{2} \int_0^1 f(t) \, dt
\]
for all \(x \in [0,1] \). But the right-hand side is a constant (independent of \(x \)), so \(F'(x) = 0 \) for all \(x \in (0,1) \), and hence \(f(x) = F'(x) = 0 \) for all \(x \in (0,1) \). By continuity, \(f(x) = 0 \) also at the points \(x = 0 \) and \(x = 1 \), and hence \(f(x) = 0 \) for all \(x \in [0,1] \) as required.

2. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function, and define \(g : \mathbb{R} \to \mathbb{R} \) by
\[
g(x) := \int_{x-1}^{x+1} f(t) \, dt
\]
for each \(x \in \mathbb{R} \).
Show that \(g \) is differentiable on \(\mathbb{R} \), and find \(g'(x) \).

SOLUTION. Fix \(x \in \mathbb{R} \), and choose \(M \in \mathbb{R}^+ \) such that \(-M < x - 1\). Then we can write
\[
g(x) = \int_{-M}^{x+1} f(t) \, dt - \int_{-M}^{x-1} f(t) \, dt,
\]
where both integrals on the right-hand side are well defined, by Theorem 18.5 and the continuity of \(f \). Moreover, we can compute the derivative of \(g \) at \(x \) as
\[
g'(x) = f(x+1) - f(x-1)
\]
by applying Theorem 18.5 separately to each integral (using linearity of differentiation).

3. Consider the sign function \(s : [-1,1] \to \mathbb{R} \) defined by
\[
s(x) := \begin{cases}
+1 & \text{if } 0 < x \leq 1, \\
-1 & \text{if } -1 \leq x < 0, \\
0 & \text{if } x = 0.
\end{cases}
\]
(a) Show that s is Riemann integrable on $[-1, 1]$ and that $\int_{-1}^{1} s(x) \, dx = 0$.

(b) Let

$$S(x) := \int_{-1}^{x} s(t) \, dt.$$

Show that $S(x) = |x| - 1$ for all $x \in [-1, 1]$.

(c) Does $S'(0)$ exist? Discuss your conclusion with reference to Theorem 18.5.

Solution.

(a) Note that the function s is monotone on $[-1, 1]$, and therefore Riemann integrable by Theorem 15.1. To see that its Riemann integral over the interval $[-1, 1]$ equals 0, take a partition $P = \{-1, -\varepsilon/4, \varepsilon/4, 1\}$. The lower sum of f with respect to P is

$$L(f, P) = -(1 - \varepsilon/4) + (1 - \varepsilon/4) - \varepsilon/2,$$

while the upper sum is

$$U(f, P) = -(1 - \varepsilon/4) + (1 - \varepsilon/4) + \varepsilon/2,$$

so each goes to 0 as ε tends to 0 (and so does their difference, which is ε).

(b) Fix $x \in [-1, 1]$ and argue directly as above using upper and lower sums. For $-1 \leq x < 0$, use the partition $P = \{-1, x\}$, for $x = 0$ use $P = \{-1, -\varepsilon, 0\}$ and for $0 < x \leq 1$ use $P = \{-1, -\varepsilon/4, \varepsilon/4, x\}$ (where $\varepsilon > 0$ needs to be chosen small enough in each case for these partitions to be well defined). The result follows from a direct computation (drawing the graph of the function will help).

(c) We know from Analysis I that the function $x \mapsto |x|$ is not differentiable at 0 (make sure you know how to argue this rigorously!), and thus $S'(0)$ does not exist. Theorem 18.5, which guarantees the existence of the derivative everywhere on the interval, only applies to continuous integrands, and the function s in this question is not continuous at 0.

4. Consider the function $h : [0, 1] \to \mathbb{R}$ defined by

$$h(x) = \begin{cases}
0 & \text{if } x \notin \mathbb{Q}, \\
1/q & \text{if } x \in \mathbb{Q} \text{ and } x = p/q \text{ in lowest terms,}
\end{cases}$$

introduced in Example 15.3. For each $x \in [0, 1]$, let

$$H(x) := \int_{0}^{x} h(t) \, dt.$$

(a) Show that the function H is identically 0 on the interval $[0, 1]$.

(b) Show that H' exists and equals 0 for all $x \in [0, 1]$.

(c) Conclude that H is not a primitive of h.

Solution.

(a) Fix $x \in [0, 1]$, and adapt the proof given in Example 15.3 in the lecture notes to the interval $[0, x]$ (instead of $[0, 1]$—there is practically no difference but you should write it out anyway).
(b) Since $H(x) = 0$ for all $x \in [0, 1]$, we conclude that H' exists and equals 0 for all $x \in [0, 1]$. (Note that we are not using any general property of h here (such as continuity, which we don’t have), but rather the fact that we can compute the integral $\int_0^1 h(t) \, dt$ explicitly.)

(c) H is not a primitive of h since it follows from Part (b) that $H'(x) \neq h(x)$ for all $x \in \mathbb{Q} \cap [0, 1]$.

5. Let $f, g : [a, b] \to \mathbb{R}$ be Riemann-integrable functions.

(a) Let $t \in \mathbb{R}$. Show that
\[
\int_a^b (tf(x) + g(x))^2 \, dx \geq 0.
\]

(b) Use Part (a) to show that for $t > 0$,
\[
2 \left| \int_a^b f(x)g(x) \, dx \right| \leq t \int_a^b f(x)^2 \, dx + \frac{1}{t} \int_a^b g(x)^2 \, dx.
\]

(c) Show that if $\int_a^b f(x)^2 \, dx = 0$, then $\int_a^b f(x)g(x) \, dx = 0$.

(d) By substituting a judicious value of t in Part (b) above, prove the Cauchy-Bunyakovsky-Schwarz Inequality, namely
\[
\left| \int_a^b f(x)g(x) \, dx \right|^2 \leq \left(\int_a^b f(x)^2 \, dx \right) \left(\int_a^b g(x)^2 \, dx \right).
\]

Solution.

(a) This follows immediately from Theorem 16.1, observing that the square integrand is non-negative for any value of $t \in \mathbb{R}$.

(b) Expanding out the square and using the linearity property of the integral (Theorems 17.3 and 17.4), we find that
\[
\int_a^b (tf(x) + g(x))^2 \, dx = t^2 \int_a^b f(x)^2 \, dx + 2t \int_a^b f(x)g(x) \, dx + \int_a^b g(x)^2 \, dx,
\]
which is non-negative by Part (a). Dividing through by $t > 0$ and rearranging gives
\[
-2t \int_a^b f(x)g(x) \, dx \leq t \int_a^b f(x)^2 \, dx + \frac{1}{t} \int_a^b g(x)^2 \, dx,
\]
from which the desired result follows by taking absolute values and applying the triangle inequality.

(c) It follows from Part (b) that if $\int_a^b f(x)^2 \, dx = 0$, then
\[
2 \left| \int_a^b f(x)g(x) \, dx \right| \leq \frac{1}{t} \int_a^b g(x)^2 \, dx.
\]
Letting t tend to ∞, we find that
\[
\left| \int_a^b f(x)g(x) \, dx \right| \leq 0,
\]
but since the absolute value of a real number is always non-negative, this implies that
\[
\left| \int_a^b f(x)g(x) \, dx \right| = \int_a^b f(x)g(x) \, dx = 0.
\]

3
(d) If \(\int_a^b f(x)^2 \, dx \neq 0 \), we may substitute
\[
t = \left| \int_a^b f(x) g(x) \, dx \right| / \int_a^b f(x)^2 \, dx
\]
in Part (b) above to obtain
\[
2 \left| \int_a^b f(x) g(x) \, dx \right| \leq \int_a^b f(x) g(x) \, dx \left(\int_a^b f(x)^2 \, dx / \int_a^b g(x)^2 \, dx \right),
\]
which upon rearranging yields the desired result.

Note that in the only case where we are not allowed to make this substitution we may invoke Part (c), establishing the Cauchy-Bunyakovsky-Schwarz Inequality in full generality.