Further Topics in Analysis: Sample Exam Question

B. Let $A \subseteq \mathbb{R}$ and $(f_n(x))_{n \in \mathbb{N}}$ be a sequence of functions from A to \mathbb{R}.

(a) (6 marks)
 i) What does it mean to say that the sequence $(f_n(x))_{n \in \mathbb{N}}$ converges pointwise on A to a function $f : A \to \mathbb{R}$?
 ii) What does it mean to say that the sequence $(f_n(x))_{n \in \mathbb{N}}$ converges uniformly on A to a function $f : A \to \mathbb{R}$?

(b) (4 marks)
 State without proof Weierstrass’s Theorem on Uniform Convergence.

(c) (8 marks)
 Find the pointwise limit of the sequence $f_n(x) = x^n$ ($n \in \mathbb{N}$) on the closed segment $[0, 1]$. Is this convergence uniform? Justify your answer.

(d) (12 marks)
 Find the pointwise limit of the sequence $f_n(x) = \frac{e^x}{n}$ ($n \in \mathbb{N}$) on \mathbb{R}. Is this convergence uniform? Justify your answer.
 Now restrict the domains of f_n to $[0, 100]$. Is the convergence uniform now? Justify your answer.

This material is copyright of the University of Bristol unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University of Bristol and is to be downloaded or copied for your private study only.